Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows
نویسندگان
چکیده
We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ∼0.1–100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ∼0.03–1M yr−1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes∼LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ∼100 pc. AGN winds suppress the nuclear SFR by factors ∼10–30 and BH accretion rate by factors ∼3–30. They increase the outflow rate from the nucleus by factors ∼10, consistent with observational evidence for galaxy-scale AGNdriven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A ‘torus-like’ geometry arises self-consistently as AGN feedback evacuates gas in polar regions.
منابع مشابه
Clumpy winds and the obscuration of Active Galactic Nuclei
The role of star-formation driven outflows in the obscuration of the central source in the Active Galactic Nuclei (AGN) is discussed. The outflow from a sub-parsec scale accretion disc is numerically modelled for parameters appropriate to the Galactic Centre. The resulting obscuration pattern is very patchy, with some lines of sight becoming optically thick to Thomson scattering. A fixed observ...
متن کاملFueling Low-level Agn Activity through the Stochastic Accretion of Cold Gas1
Using a simple description of feedback from black hole growth, we develop an analytic model for the fueling of Seyferts (low-luminosity AGN) and their relation to their host galaxies, Eddington ratio distributions, and cosmological evolution. We derive a solution for the time evolution of accretion rates in a feedback-driven blast wave, applicable to large-scale outflows from bright quasars in ...
متن کاملEffect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملTwo-phase model for black hole feeding and feedback
We study effects of active galactic nucleus (AGN) feedback outflows on multiphase inter stellar medium (ISM) of the host galaxy. We argue that supermassive black hole (SMBH) growth is dominated by accretion of dense cold clumps and filaments. AGN feedback outflows overtake the cold medium, compress it, and trigger a powerful starburst – a positive AGN feedback. This predicts a statistical corre...
متن کاملThe big picture of AGN feedback: Black hole accretion and galaxy evolution in multiwavelength surveys
Large extragalactic surveys allow us to trace, in a statistical sense, how supermassive black holes, their host galaxies, and their dark matter halos evolve together over cosmic time, and so explore the consequences of AGN feedback on galaxy evolution. Recent studies have found significant links between the accretion states of black holes and galaxy stellar populations, local environments, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015